Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
2.
J Hematol Oncol ; 14(1): 123, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-2258652

ABSTRACT

Thromboembolism is a frequent cause of severity and mortality in COVID-19. However, the etiology of this phenomenon is not well understood. A cohort of 1186 subjects, from the GEN-COVID consortium, infected by SARS-CoV-2 with different severity was stratified by sex and adjusted by age. Then, common coding variants from whole exome sequencing were mined by LASSO logistic regression. The homozygosity of the cell adhesion molecule P-selectin gene (SELP) rs6127 (c.1807G > A; p.Asp603Asn) which has been already associated with thrombotic risk is found to be associated with severity in the male subcohort of 513 subjects (odds ratio = 2.27, 95% Confidence Interval 1.54-3.36). As the SELP gene is downregulated by testosterone, the odd ratio is increased in males older than 50 (OR 2.42, 95% CI 1.53-3.82). Asn/Asn homozygotes have increased D-dimers values especially when associated with poly Q ≥ 23 in the androgen receptor (OR 3.26, 95% CI 1.41-7.52). These results provide a rationale for the repurposing of antibodies against P-selectin as adjuvant therapy in rs6127 male homozygotes especially if older than 50 or with an impaired androgen receptor.


Subject(s)
COVID-19/genetics , P-Selectin/genetics , Thrombosis/genetics , COVID-19/complications , Down-Regulation , Female , Humans , Male , Middle Aged , Point Mutation , SARS-CoV-2/isolation & purification , Thrombosis/etiology
3.
Children (Basel) ; 9(4)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1953054

ABSTRACT

BACKGROUND: The use of virus-neutralizing monoclonal antibodies has been approved in fragile populations, including kidney transplant recipients, who are at risk of developing severe COVID-19. Sotrovimab is the only currently available anti-SARS-CoV-2 neutralizing monoclonal antibody with activity against the new Omicron variant of concern. While sotrovimab has been approved in adolescents and adults, studies regarding its efficacy and safety in children aged less than 12 years old and weighing less than 40 kg are still lacking. Here, we report a first case of a child, who was treated early with sotrovimab after a kidney transplant. CASE REPORT: At the end of January 2022, a 11-year-old male child underwent a deceased-donor kidney transplant and became infected with SARS-CoV-2 during the first day after surgery. Due to the increased risk of developing severe COVID-19, based on the predominance of Omicron and the patient's renal function, the child was treated with sotrovimab. The clinical course was successful and no adverse reactions were reported. CONCLUSIONS: For the first time, we report the well-tolerated use of sotrovimab in children under 12 years old. As the pandemic affects children across the globe, urgent data on sotrovimab dosing in children with a higher risk of developing severe COVID-19 are needed.

4.
Science ; 377(6604): eabm3125, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1901907

ABSTRACT

Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis.


Subject(s)
COVID-19 , Host-Pathogen Interactions , SARS-CoV-2 , Sialic Acids , Spike Glycoprotein, Coronavirus , COVID-19/transmission , Cryoelectron Microscopy , Genetic Variation , Humans , Nuclear Magnetic Resonance, Biomolecular , Polysaccharides/chemistry , Protein Binding , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Sialic Acids/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Clin Kidney J ; 15(8): 1574-1582, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1883008

ABSTRACT

Background: Several cases of idiopathic nephrotic syndrome (INS) relapse following the administration of coronavirus disease 2019 (COVID-19) vaccines have recently been reported, raising questions about the potential relationship between the immune response to COVID-19 vaccination and INS pathogenesis. Methods: We performed a retrospective multicentre survey describing the clinical and biological characteristics of patients presenting a relapse of INS after COVID-19 vaccination, with an assessment of outcome under treatment. Results: We identified 25 patients (16 men and 9 women) presenting a relapse within 1 month of a COVID-19 vaccine injection. The glomerular disease was of childhood onset in half of the patients and most patients (21/25) had received at least one immunosuppressive drug in addition to steroids for frequently relapsing or steroid-dependent nephrotic syndrome (NS). All patients were in a stable condition at the time of injection and 11 had no specific treatment. In five patients, the last relapse was reported >5 years before vaccine injection. The Pfizer-BioNTech (BNT162b2) vaccine was used in 80% of the patients. In 18 cases, INS relapse occurred after the first injection, a mean of 17.5 days after vaccination. A second injection was nevertheless administered in 14 of these patients. Five relapses occurred after administration of the second dose and two relapses after the administration of the third dose. All but one of the patients received steroids as first-line treatment, with an additional immunosuppressive agent in nine cases. During follow-up, complete remission was achieved in 21 patients, within 1 month in 17 cases. Only one patient had not achieved at least partial remission after 3 months of follow-up. Conclusions: This case series suggests that, in rare patients, COVID-19 vaccination may trigger INS relapse that is generally easy to control. These findings should encourage physicians to persuade their patients to complete the COVID-19 vaccination schedule.

7.
Microorganisms ; 10(5)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1855707

ABSTRACT

Previous studies assessing the antibody response (AbR) to mRNA COVID-19 vaccines in solid organ transplant (SOT) recipients are limited by short follow-up, hampering the analysis of AbR kinetics. We present the ORCHESTRA SOT recipients cohort assessed for AbR at first dose (t0), second dose (t1), and within 3 ± 1 month (t2) after the first dose. We analyzed 1062 SOT patients (kidney, 63.7%; liver, 17.4%; heart, 16.7%; and lung, 2.5%) and 5045 health care workers (HCWs). The AbR rates in the SOTs and HCWs were 52.3% and 99.4%. The antibody levels were significantly higher in the HCWs than in the SOTs (p < 0.001). The kinetics showed an increase (p < 0.001) in antibody levels up to 76 days and a non-significant decrease after 118 days in the SOT recipients versus a decrease up to 76 days (p = 0.02) and a less pronounced decrease between 76 and 118 days (p = 0.04) in the HCWs. Upon multivariable analysis, liver transplant, ≥3 years from SOT, mRNA-1273, azathioprine, and longer time from t0 were associated with a positive AbR at t2. Older age, other comorbidities, mycophenolate, steroids, and impaired graft function were associated with lower AbR probability. Our results may be useful to optimize strategies of immune monitoring after COVID-19 vaccination and indications regarding timing for booster dosages calibrated on SOT patients' characteristics.

8.
Children ; 9(4):451, 2022.
Article in English | MDPI | ID: covidwho-1762221

ABSTRACT

Background: The use of virus-neutralizing monoclonal antibodies has been approved in fragile populations, including kidney transplant recipients, who are at risk of developing severe COVID-19. Sotrovimab is the only currently available anti-SARS-CoV-2 neutralizing monoclonal antibody with activity against the new Omicron variant of concern. While sotrovimab has been approved in adolescents and adults, studies regarding its efficacy and safety in children aged less than 12 years old and weighing less than 40 kg are still lacking. Here, we report a first case of a child, who was treated early with sotrovimab after a kidney transplant. Case Report: At the end of January 2022, a 11-year-old male child underwent a deceased-donor kidney transplant and became infected with SARS-CoV-2 during the first day after surgery. Due to the increased risk of developing severe COVID-19, based on the predominance of Omicron and the patient's renal function, the child was treated with sotrovimab. The clinical course was successful and no adverse reactions were reported. Conclusions: For the first time, we report the well-tolerated use of sotrovimab in children under 12 years old. As the pandemic affects children across the globe, urgent data on sotrovimab dosing in children with a higher risk of developing severe COVID-19 are needed.

9.
Autophagy ; 18(7): 1662-1672, 2022 07.
Article in English | MEDLINE | ID: covidwho-1585354

ABSTRACT

The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways.Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor.


Subject(s)
COVID-19 , Toll-Like Receptor 3 , Autophagy/genetics , Biomarkers , COVID-19/genetics , HEK293 Cells , Humans , Hydroxychloroquine/therapeutic use , Male , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Severity of Illness Index , Toll-Like Receptor 3/genetics
10.
Genes Immun ; 23(1): 51-56, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585868

ABSTRACT

Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses. Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.


Subject(s)
COVID-19 , Toll-Like Receptor 7 , Cytokines/metabolism , Down-Regulation , Humans , Leukocytes, Mononuclear/metabolism , Male , SARS-CoV-2 , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism
11.
Hum Genet ; 141(1): 147-173, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565371

ABSTRACT

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Subject(s)
COVID-19/genetics , COVID-19/physiopathology , Exome Sequencing , Genetic Predisposition to Disease , Phenotype , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Germany , Humans , Italy , Male , Middle Aged , Polymorphism, Single Nucleotide , Quebec , SARS-CoV-2 , Sweden , United Kingdom
13.
SN Compr Clin Med ; 3(9): 1935-1937, 2021.
Article in English | MEDLINE | ID: covidwho-1286230

ABSTRACT

Since April 2020, several paediatric cases were reported with a multisystemic inflammatory syndrome related with SARS-CoV2, called MIS-C. In this case report, we describe a 2-year-old male with end-stage renal disease (ESRD) in renal replacement therapy (RRT) with peritoneal dialysis and severe hypertension affected by a severe SARS-CoV2 related illness characterised by multiorgan failure and need for intensive care, with clinical and instrumental features compatible with MIS-C. Most paediatric patients with kidney disease experience mild SARS-CoV2 disease and to our knowledge, this is the first case of a child with chronic kidney disease suffering from MIS-C. We believe that chronic kidney disease together with dialysis status and severe hypertension play a crucial role on developing severe forms of SARS-CoV2 related disease.

14.
J Pers Med ; 11(6)2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1270072

ABSTRACT

The clinical presentation of COVID-19 is extremely heterogeneous, ranging from asymptomatic to severely ill patients. Thus, host genetic factors may be involved in determining disease presentation and progression. Given that carriers of single cystic fibrosis (CF)-causing variants of the CFTR gene-CF-carriers-are more susceptible to respiratory tract infections, our aim was to determine their likelihood of undergoing severe COVID-19. We implemented a cohort study of 874 individuals diagnosed with COVID-19, during the first pandemic wave in Italy. Whole exome sequencing was performed and validated CF-causing variants were identified. Forty subjects (16 females and 24 males) were found to be CF-carriers. Among mechanically ventilated patients, CF-carriers were more represented (8.7%) and they were significantly (p < 0.05) younger (mean age 51 years) compared to noncarriers (mean age 61.42 years). Furthermore, in the whole cohort, the age of male CF-carriers was lower, compared to noncarriers (p < 0.05). CF-carriers had a relative risk of presenting an abnormal inflammatory response (CRP ≥ 20 mg/dL) of 1.69 (p < 0.05) and their hazard ratio of death at day 14 was 3.10 (p < 0.05) in a multivariate regression model, adjusted for age, sex and comorbidities. In conclusion, CF-carriers are more susceptible to the severe form of COVID-19, showing also higher risk of 14-day death.

15.
Elife ; 102021 03 02.
Article in English | MEDLINE | ID: covidwho-1112866

ABSTRACT

Background: Recently, loss-of-function variants in TLR7 were identified in two families in which COVID-19 segregates like an X-linked recessive disorder environmentally conditioned by SARS-CoV-2. We investigated whether the two families represent the tip of the iceberg of a subset of COVID-19 male patients. Methods: This is a nested case-control study in which we compared male participants with extreme phenotype selected from the Italian GEN-COVID cohort of SARS-CoV-2-infected participants (<60 y, 79 severe cases versus 77 control cases). We applied the LASSO Logistic Regression analysis, considering only rare variants on young male subsets with extreme phenotype, picking up TLR7 as the most important susceptibility gene. Results: Overall, we found TLR7 deleterious variants in 2.1% of severely affected males and in none of the asymptomatic participants. The functional gene expression profile analysis demonstrated a reduction in TLR7-related gene expression in patients compared with controls demonstrating an impairment in type I and II IFN responses. Conclusions: Young males with TLR7 loss-of-function variants and severe COVID-19 represent a subset of male patients contributing to disease susceptibility in up to 2% of severe COVID-19. Funding: Funded by private donors for the Host Genetics Research Project, the Intesa San Paolo for 2020 charity fund, and the Host Genetics Initiative. Clinical trial number: NCT04549831.


Subject(s)
COVID-19/genetics , Polymorphism, Single Nucleotide , Toll-Like Receptor 7/genetics , Adult , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index
16.
EBioMedicine ; 65: 103246, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1108220

ABSTRACT

BACKGROUND: While SARS-CoV-2 similarly infects men and women, COVID-19 outcome is less favorable in men. Variability in COVID-19 severity may be explained by differences in the host genome. METHODS: We compared poly-amino acids variability from WES data in severely affected COVID-19 patients versus SARS-CoV-2 PCR-positive oligo-asymptomatic subjects. FINDINGS: Shorter polyQ alleles (≤22) in the androgen receptor (AR) conferred protection against severe outcome in COVID-19 in the first tested cohort (both males and females) of 638 Italian subjects. The association between long polyQ alleles (≥23) and severe clinical outcome (p = 0.024) was also validated in an independent cohort of Spanish men <60 years of age (p = 0.014). Testosterone was higher in subjects with AR long-polyQ, possibly indicating receptor resistance (p = 0.042 Mann-Whitney U test). Inappropriately low serum testosterone level among carriers of the long-polyQ alleles (p = 0.0004 Mann-Whitney U test) predicted the need for intensive care in COVID-19 infected men. In agreement with the known anti-inflammatory action of testosterone, patients with long-polyQ and age ≥60 years had increased levels of CRP (p = 0.018, not accounting for multiple testing). INTERPRETATION: We identify the first genetic polymorphism that appears to predispose some men to develop more severe disease. Failure of the endocrine feedback to overcome AR signaling defects by increasing testosterone levels during the infection leads to the polyQ tract becoming dominant to serum testosterone levels for the clinical outcome. These results may contribute to designing reliable clinical and public health measures and provide a rationale to test testosterone as adjuvant therapy in men with COVID-19 expressing long AR polyQ repeats. FUNDING: MIUR project "Dipartimenti di Eccellenza 2018-2020" to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020) and "Bando Ricerca COVID-19 Toscana" project to Azienda Ospedaliero-Universitaria Senese. Private donors for COVID-19 research and charity funds from Intesa San Paolo.


Subject(s)
COVID-19/pathology , Peptides/genetics , Receptors, Androgen/genetics , Aged , Case-Control Studies , Critical Care/statistics & numerical data , Female , Genome, Human/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Spain , Testosterone/blood
17.
Eur J Hum Genet ; 29(5): 745-759, 2021 05.
Article in English | MEDLINE | ID: covidwho-1033853

ABSTRACT

Within the GEN-COVID Multicenter Study, biospecimens from more than 1000 SARS-CoV-2 positive individuals have thus far been collected in the GEN-COVID Biobank (GCB). Sample types include whole blood, plasma, serum, leukocytes, and DNA. The GCB links samples to detailed clinical data available in the GEN-COVID Patient Registry (GCPR). It includes hospitalized patients (74.25%), broken down into intubated, treated by CPAP-biPAP, treated with O2 supplementation, and without respiratory support (9.5%, 18.4%, 31.55% and 14.8, respectively); and non-hospitalized subjects (25.75%), either pauci- or asymptomatic. More than 150 clinical patient-level data fields have been collected and binarized for further statistics according to the organs/systems primarily affected by COVID-19: heart, liver, pancreas, kidney, chemosensors, innate or adaptive immunity, and clotting system. Hierarchical clustering analysis identified five main clinical categories: (1) severe multisystemic failure with either thromboembolic or pancreatic variant; (2) cytokine storm type, either severe with liver involvement or moderate; (3) moderate heart type, either with or without liver damage; (4) moderate multisystemic involvement, either with or without liver damage; (5) mild, either with or without hyposmia. GCB and GCPR are further linked to the GCGDR, which includes data from whole-exome sequencing and high-density SNP genotyping. The data are available for sharing through the Network for Italian Genomes, found within the COVID-19 dedicated section. The study objective is to systematize this comprehensive data collection and begin identifying multi-organ involvement in COVID-19, defining genetic parameters for infection susceptibility within the population, and mapping genetically COVID-19 severity and clinical complexity among patients.


Subject(s)
Biological Specimen Banks , COVID-19/genetics , Genetic Predisposition to Disease , Registries , SARS-CoV-2 , Specimen Handling , Adolescent , Adult , COVID-19/epidemiology , Female , Humans , Italy , Male
19.
PLoS One ; 15(11): e0242534, 2020.
Article in English | MEDLINE | ID: covidwho-934336

ABSTRACT

Clinical and molecular characterization by Whole Exome Sequencing (WES) is reported in 35 COVID-19 patients attending the University Hospital in Siena, Italy, from April 7 to May 7, 2020. Eighty percent of patients required respiratory assistance, half of them being on mechanical ventilation. Fiftyone percent had hepatic involvement and hyposmia was ascertained in 3 patients. Searching for common genes by collapsing methods against 150 WES of controls of the Italian population failed to give straightforward statistically significant results with the exception of two genes. This result is not unexpected since we are facing the most challenging common disorder triggered by environmental factors with a strong underlying heritability (50%). The lesson learned from Autism-Spectrum-Disorders prompted us to re-analyse the cohort treating each patient as an independent case, following a Mendelian-like model. We identified for each patient an average of 2.5 pathogenic mutations involved in virus infection susceptibility and pinpointing to one or more rare disorder(s). To our knowledge, this is the first report on WES and COVID-19. Our results suggest a combined model for COVID-19 susceptibility with a number of common susceptibility genes which represent the favorite background in which additional host private mutations may determine disease progression.


Subject(s)
COVID-19/genetics , COVID-19/therapy , Exome Sequencing , Hospitalization/statistics & numerical data , Aged , COVID-19/diagnosis , Female , Humans , Male , Middle Aged , Prognosis
20.
Clin Transplant ; 34(10): e14063, 2020 10.
Article in English | MEDLINE | ID: covidwho-709920

ABSTRACT

The current pandemic SARS-CoV-2 has required an unusual allocation of resources that can negatively impact chronically ill patients and high-complexity procedures. Across the European Reference Network on Pediatric Transplantation (ERN TransplantChild), we conducted a survey to investigate the impact of the COVID-19 outbreak on pediatric transplant activity and healthcare practices in both solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT). The replies of 30 professionals from 18 centers in Europe were collected. Twelve of 18 centers (67%) showed a reduction in their usual transplant activity. Additionally, outpatient visits have been modified and restricted to selected ones, and the use of telemedicine tools has increased. Additionally, a total of 14 COVID-19 pediatric transplanted patients were identified at the time of the survey, including eight transplant recipients and six candidates for transplantation. Only two moderate-severe cases were reported, both in HSCT setting. These survey results demonstrate the limitations in healthcare resources for pediatric transplantation patients during early stages of this pandemic. COVID-19 disease is a major worldwide challenge for the field of pediatric transplantation, where there will be a need for systematic data collection, encouraging regular discussions to address the long-term consequences for pediatric transplantation candidates, recipients, and their families.


Subject(s)
COVID-19/prevention & control , Health Care Rationing/trends , Health Services Accessibility/trends , Hematopoietic Stem Cell Transplantation/trends , Infection Control/trends , Organ Transplantation/trends , Practice Patterns, Physicians'/trends , Adolescent , COVID-19/epidemiology , COVID-19/etiology , Child , Child, Preschool , Europe/epidemiology , Female , Health Care Surveys , Humans , Infant , Infant, Newborn , Infection Control/methods , Male , Pandemics , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Risk Factors , Telemedicine/trends
SELECTION OF CITATIONS
SEARCH DETAIL